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A simple viscoelastic approach is proposed to describe the periodic patterns, characterized by static walls
and splay-bend distortion, which appear in samples of nematic liquid crystals having dielectric anisotropy«a
dependent on the frequency. The modulated structure, resulting from a steady velocity fieldv coupled with a
steady director fieldn, is achieved when an electric field is applied normally to the plates of a planar unidi-
rectional nematic cell. Such a kind of quasistatic domain is theoretically investigated not only in the frequency
region, where the usual aperiodic Fre´edericksz effect becomes unfavorable, Re~«a! still being positive, but also
where Re~«a!,0, favoring in principle the initial orientation. Both previous situations are considered in the
vicinity of the sign reversal point. The present model describes the dielectric loss near the reversal point in
terms of the appearance of the corresponding effective space charge, which interacts with the effective electric
field, causing a steady electrohydrodynamic motion of very small amplitude inside the nematic liquid crystal
layer. As a result, a quasistatic tilted modulated structure emerges, with wave vector parallel to the initial
planar orientation of the nematic cell.

PACS number~s!: 61.30.2v

I. INTRODUCTION

The electrically controlled Fre´edericksz effect in nematic
liquid crystals~NLCs! is known to occur due to the dielectric
coupling between the nematic directorn and an external field
E applied to a NLC layer properly aligned, for instance, in a
configuration without any distortion. In particular, let us con-
sider a unidirectional planar~P! cell, filled by a NLC with
the real part of the dielectric anisotropy Re~«a!, supposed to
be positive at low frequency. The corresponding interaction
energy density is given byf E>2«0Re~«a)E

2u2/2 for small
director tilt anglesu ~uuu!1! from the initial P orientation, if
E is normal to the cell plates@1#. Obviously f E goes to zero
for low values of the real dielectric anisotropy Re~«a!.0 and
disappears when the NLC reaches the dielectric isotropic
point Re~«a!50: for instance, such a condition can be
reached for several mixtures of NLC compounds, by increas-
ing the angular frequencyv of the applied electric field
E~v!.

In fact, special interest should be paid indeed for both
fundamental and practical reasons to those NLCs that exhibit
a sign reversal of the real dielectric anisotropy Re~«a! with
the angular frequencyv of the applied fieldE5E0cosvt.
From an application point of view, it appears particularly
interesting, when the sign inversion pointv5vi of the di-
electric anisotropy is in the kHz region. A periodic domain
structure was observed earlier in planar NLC cells@2,3#,
close tov5vi , comprising a range where Re~«a! is given by

Re@«a~v,v i !#.0, ~1!

Re@«a~v5v i !#50,

Re@«a~v.v i !#,0

and was considered as a pure electrohydrodynamic phenom-
enon@4,5#. The electrohydrodynamic model of Goossens@4#
in fact gave an approximate explanation of the stripes ap-
pearance in a NLC layer in the presence of ions, in the
framework of a one-dimensional approach.

Careful experiments have been performed@6,7#, showing
the appearance of quasistatic stripes in NLC cells obtained
with mixtures of butyl-methoxyazoxybenzole and butyl-
heptyloxyazoxybenzole, doped with cyanophenyl esters of
benzoic acids. The quasistatic stripes are characterized by the
splay-bend distortion only, where a steady director fieldn is
coupled with a steady velocity fieldv, providing static stripe
walls.

In this case, we will prove that neither the parallel ionic
conductivitysi nor the ionic conductivity anisotropysa in-
fluences the instability threshold, whereas the threshold itself
turns out to be strictly dependent on the ratiovi /s' , s'

being the perpendicular conductivity, and on the Leslie’s vis-
cosity coefficientsa2 anda5 @8#. We will treat these domains
as due to a generalized periodic Fre´edericksz transition
@9–11# involving also steady hydrodynamics.

Figure 1 qualitatively shows the behavior of the external
electric potential at the thresholdUc as a function of the
angular frequencyv of the applied electronic fieldE in the
case of a NLC exhibiting«a5«a~v! and filling a cell with
initial P orientation. Near the inversion frequency, where the
Fréedericksz threshold diverges, there is a critical frequency
vp,vi such that the periodic domains arise and, as a conse-
quence, the diagram shows the contemporary presence of
three possible configurations, involving the unidirectional
planar, aperiodic, and periodic alignments, respectively.

II. THEORY

The aim of the present paper is to give a simple explana-
tion of the physical origin of the quasistatic domain structure
not as a pure dielectric effect, like it happens in ideal insu-*Authors to whom correspondence should be addressed.
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lating materials, but as a complex dielectric effect, resulting
in a steady director reorientation, spatially periodic in the
plane~x,z!, involving just a splay-bend distortion~see Fig. 2,
where thex axis characterizes theP easy direction along both
substrates and thez axis is normal to the substrates them-
selves!. The director fieldn couples with a steady molecular
velocity field v, allowing the domain walls to be fixed.

Such a periodic pattern is accompanied by a spatial regu-
lar induced potential distribution, providing an amplitude
modulated internal contributionEI to the effective electric
field Ee5E1EI , which turns out to be nonlocal, but depen-
dent on the already established deformation in the whole
cell.

Let us consider the external electric fieldE with ampli-
tude

E~ t !5E0cosvt5E0Re~e
ivt! ~2!

as applied along thez axis. The NLC filling the cell could be
characterized by a Debye length either much greater than or
of the same order as the layer thickness. Hence, in the first
case it can only be considered as a perfect insulator, whereas
in the second one its conductivity cannot be neglected. We
will consider the more general case, taking into account the
possible presence of space charges.

The nematic directorn deviates to the small tilt angleu
from the initialP orientation along thex axis, belonging to
the plane~x,z!: this is the simplest deformation, providing no
azimuthal variation. Hence the director field reads

n;~1,0,u! where uuu!1. ~3!

The dielectric displacement vectorD is given by

D

«0
5«'Ee1«a~Ee•n!n, ~4!

where the complex permittivity anisotropy is«a[«i2«' , «i

and«' being the dielectric constants parallel and perpendicu-
lar to the NLC director, respectively. The parallel permittiv-
ity «i varies with the angular frequencyv according to the
Debye model:

« i5«82 i«9,

«85«`1
«02«`

11~v/vD!2
, ~5!

«95
~«02«`!v/vD

11~v/vD!2
,

where «05«8~v50!, «`5«8~v→`!, and vD is Debye fre-
quency. At the same time the normal permittivity«' is sup-
posed to be real and almost constant in this frequency region.

At the angular frequencyv5vi of the dielectric sign re-
versal, the uniform Fre´edericksz transition cannot take place,
since the corresponding contributionf E to the nematic free-
energy density vanishes. In fact, in the case of uniform
Fréedericksz transition, the NLC mixture behaves as it would
for a perfect dielectric material, since only the real part of the
dielectric tensor matters: hence just the real part of the di-
electric anisotropyd«[«82«' plays a role. Furthermore, the
free-energy density due to the dielectric coupling reads

f E52
D•E

2
52

DzE

2
, ~6!

whereE is the external field, since due to the absence of any
modulation, the internal contributionEI may be neglected
@1#. Also Dz turns out to be thez component of the external
electric displacement

Dz

«0
5Re~«'E1«aEu2! ~7!

FIG. 1. Critical electric potentialUc ~in arbitrary units! for ape-
riodic and periodic splay-bend distortion, as a function of the re-
duced angular frequencyv/vi , wherev i is the inversion point of
the real permittivity anisotropyd«[«82«' . When v,vi , then
d«.0 and vice versa. The phase diagram shows, for NLC materials
similar to the mixtures used in the experiment@6#, the regions
where the initially undistortedP alignment, the aperiodic Fre´eder-
icksz deformation, and the periodic quasistatic domains are stable,
respectively. Note the presence of the tricritical pointC and, re-
markably, the fact that the periodic steady deformation appears also
for d«,0, provided that the potentialU is high enough.

FIG. 2. Periodic splay-bend steady distortion in the~x,z! plane
for a NLC having parallel complex permittivity«i dependent on the
angular frequencyv of the applied electric field. The NLC director
n, initially in the unidirectional planar~P! configuration along thex
axis, is kept aligned parallel to thex axis at the substrate, due to the
strong anchoring. The external electric fieldE is applied along thez
axis normal to the cell plates.
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and the time average~in angular bracketŝ &! of the electric
free-energy density is written

^ f E&52 KDzE

2 L 52
«0
2T F E

0

T

Re~«'E!E dt

1u2E
0

T

Re~«aE!E dtG , ~8!

whereT52p/v is the period of the applied field. Note that
u is time independent, since only quasistatic period patterns
are investigated: as previously stated,n is a steady field. The
first term in ~8! does not depend on the director orientation
and could be omitted, i.e., the Fre´edericksz phenomenon is
affected only by the second term. The latter one, according
to Eqs.~2! and ~5!, is written as

2
«0u

2

2T E
0

T

Re~«aE!E dt52
«0u

2u«auE0
2

2T

3E
0

T

cos~vt1a!cosvt dt,

~9!

wherea5arg~«a!52arctan@«9/~«82«'!#. At the point of di-
electric isotropy, we obtain«85«' and uau5p/2, which
means that the second term is zero, i.e., the uniform aperi-
odic Fréedericksz effect cannot take place~see Fig. 1!.

Let us suppose now that the Fre´edericksz transition takes
place in the form of a modulated structure. Hence, as we
mentioned above, the effective electric fieldEe is the super-
position of the applied electric fieldE~t! and of the small
internal fieldEI(x,z,t). Such a nonlocal contribution cannot
be neglected, as in the usual situations. In fact, when the
periodic stripes exist, also the internal field must present a
spatially modulated structureEI(x,z,t)52¹c(x,z)E(t),
which influences the periodic pattern in its turn, as a feed-
back effect. Note that the characteristic lengthc~x,z! can be
defined as the reduced potential of the internal electric field,
taking into account locally the effect of the nonlocal distor-
tion in the whole cell. In this case the effective electric field
becomes dependent on both coordinates~x,z! too and reads

Ee5S 2
]c

]x
,0,12

]c

]z DE. ~10!

SinceEI is small as compared withE, then alsou¹cu must be
small, such as

H U]c

]xU,U]c

]zUJ !1. ~11!

The variations of the electric-field-reduced potentialc~x,z!
are coupled with those of the director tilt angleu by the
Maxwell equation div~D/«0!5div@«'Ee1«a~Ee•n!n#5Q/«0 ,
providing the local Gauss law in the mesogenic material, in
the form

« iE
]2c

]x2
1«'E

]2c

]z2
2«aE

]u

]x
1
Q

«0
50, ~12!

where the spatial charge densityQ is a priori due to the
dielectric loss and to the ionic conductivity.

Since the external electric fieldE~t! is harmonic according
to Eq. ~2!, consequently, neglecting the contribution of the
higher-order harmonics, the effective spatial charge density
Q is supposed to obey to the harmonic law with a phase shift
with respect to the imposed fieldE:

Q5Qc~x,z!cosvt1Qs~x,z!sinvt. ~13!

The effective spatial charge densityQ interacts with the ef-
fective electric fieldEe , exerting a drag forceQEe per vol-
ume unit in the NLC cell, thus causing an electrohydrody-
namic flow. Keeping only the zeroth-order term in the
interaction, the drag force can be written as;QE, whereE is
the external field only. Due to the symmetry, the velocity
field v is given by

v5~vx,0,vz!. ~14!

Let us stress once more that all the small parameters
j[~u,c,Qc ,Qs ,vx ,vz! do not depend on they coordinate,
since the present model is concerned only with domain walls
oriented along such a direction. For this reason, in Eq.~14!
vy50 too. In fact, the experiment shows that a linearly po-
larized light beam along thex direction gives a modulated
pattern, whereas a light beam polarized along they direction
does not give any diffraction picture.

We suppose that the~x,z! dependence of the above-
mentioned unknown parametersj could be written as
j5j0exp~iqxx1 iqzz) @12#, where the subsetj0[@u,c,vx ,vz#
generally can be time dependent,qx ,qz being the wave vec-
tors of the domains along thex andzdirections, respectively.
The linear electrohydrodynamic model describing the prob-
lem includes, together with Gauss’s law~12!, also ~i! the
Maxwell equation connected with the effective current den-
sity

dQ

dt
1divj50, ~15!

wherej5s̃Ee and s̃[$sik%5$s'dik1sanink% is the complex
conductivity tensor;~ii ! the Navier-Stokes equations, i.e., the
Newton law connecting the particle acceleration components
dv i /dt in the anisotropic liquid with the internal pressureP,
the electrical drag forceQEi , and the viscous stresses
]Si j /]xj ,

r
dv i
dt

52
]P

]xi
1QEi1

]S i j

]xj
, ~16!

wherer is the mass density andSi j is the Leslie-Ericksen
viscosity tensor@8#, expanded according to Rivlin’s rule
@13–15# in terms of the directorn, of the emisymmetric ve-
locity gradientAi j , and of the director substantial derivative
N, where the linear combination coefficients are@1# Leslie’s
viscositiesai ~i51,...,6),
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S i j5a1ninkAkmnnnm1a2niNj1a3njNi1a4Ai j

1a5ninkAk j1a6Aiknknj ,

Aik5
1

2 S ]v i
]xk

1
]vk
]xi

D , ~17!

N5
dn

dt
1
1

2
@n3curlv#;

~iii ! the continuity equation for incompressible liquids

divv50, ~18!

which describesvx as dependent onvz ; and ~iv!the torque-
equation for NLC director rotation under the applied field

n3h5G5n3$g1N1g2Ãn%, ~19!

whereh52~df/dn! is the functional derivatives of the NLC
free-energy densityf, g1 and g2 are defined asg1[a32a2
andg 2[a31a2, andÃ[$Ai j %.

The final set of the linear electrohydrodynamic equations
in the parameters@z0[~]u/]x!0, c0,Qs

0 ,Qc
0 ,v0[vz0# may be

derived from Eqs.~12!, ~15!, ~16!, and~19! as @12,15#

@~«8qx
21«'qz

2!cost1«9qx
2sint#E0c0

1~d« cost1«9sint!z0E05~Qc
0cost1Qs

0sint!/«0

~2Qc
0v sint1Qs

0vcost!1@~s8qx
21s'qz

2!cost

1s9qx
2sint#E0c01~ds8cost1s9sint!z0E050,

~20!

rv~qx
21qz

2!
dv0
dt

1~h1qx
41h12qx

2qz
21h2qz

4!v0

1~a3qz
22a2qx

2!
dz0
dt

2qx
2E0~Qc

0cos2t1Qs
0cost sint!50,

g1v
dz0
dt

1z0@K33qx
21K11qz

22«0E0
2~d« cos2t

1«9sint cost!#2qx
2«0E0

2c0~d«cos2t1«9sint cost!

1~a3qz
22a2qx

2!v050,

wheret[vt is the reduced time,h1,h12,h2 are the combina-
tions of Leslie’s viscosities@1,8#

h15
1
2 ~a41a52a2!,

h125a11a41
1
2 ~a51a61a32a2!,

h25
1
2 ~a31a41a6!, ~21!

andK11,K33 are splay and bend elastic moduli. We stress the
fact that the componentvx does not appear in the system~20!
because it is related tovz by the continuity equation for
incompressible fluid~18!. Moreover, when writing system

~20!, the complex nature of the permittivity and of the elec-
tric field has been taken into account, according to the rela-
tions @see Eq.~2!#

« iE5Re@~«82 i«9!E0~cost1 i sint!#

5E0~«8 cost1«9sint!,

«aE5Re@~d«2 i«9!E0~cost1 i sint!#

5E0~d« cost1«9sint!, ~22!

«a5d«2 i«9.

Similar relations were also considered for the relevant NLC
conductivities, i.e., for the complex parallel conductivity
si5s82is9 and the perpendicular conductivitys' , as taken
with respect to the NLC director. Note thats' turns out to be
real. Let us suppose that the system~20! has steady solutions
z0, c0, andv0 , i.e.,

dz0
dt

5
dc0

dt
5
dv0
dt

50. ~23!

To evaluate the threshold of the domain structure around the
inversion pointv5vi , where Re~«a!5d«50, it is enough to
compare the coefficients of the same order in cost and sint
in the first two equations in the system~20!.

Concerning the second two equations, it is possible either
to average them over one period in time or to neglect the
second harmonic contribution. The actual existence of the
higher-order terms in cos~2t! and sin~2t! introduces only
corrections of the order of

K̄q2

g1v
!1,

āq2

rv
!1, ~24!

whereK̄,ā are averaged values of elastic constants and vis-
cosities, respectively~see Ref.@12#, p. 335!. Such terms can
be neglected in the present case, which comprises suffi-
ciently large frequencies, around the sign inversion point.

For the sake of simplicity, let us assume the hypothesis of
one elastic constant and let us consider the weighted average
of the viscosity

K115K33[K,
~25!

h1qx
41h12qx

2qz
21h2qz

4;h̄~qx
21qz

2!2.

Then the system~20! reads, settings[s8/s' :

v05
qx
2Qc

0E0

2h̄~qx
21qz

2!2
,

z0K~qx
21qz

2!2
«0d«E0

2

2
~c0qx

21z0!1~a3qz
22a2qx

2!v050,

Qc
0/«05~qx

2«81«'qz
2!E0c01d«E0z0 ,

~26!
Qs
0/«05«9E0~c0qx

21z0!,

vQs
01s'~sqx

21qz
2!c0E050,

vQc
05s9E0~qx

2c01z0!1dsE0z0 .
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It is worth noting that the system~26! allows us to determine
the five parametersj0 and the imaginary part of the conduc-
tivity s9, which by definition gives an increase of the free
energy embedded in the dielectric material. In particular, the
last four equations of the system~26! enable us to expresss9
in terms of the dielectric loss«9:

s95«0«9v$dsz02«0v@~«8qx
21«'qz

2!c01d«z0#%

3@s'~sqx
21qz

2!c0#
21, ~27!

which, for ds50, is simply written

s95«9«0vS d«

«9
2

«'«0v

s'
D . ~278!

Limiting ourselves to the hypothesis of conductivity isotropy
ds50 and considering Eq.~278!, the first five equations of
the system~26! are linearly independent of the five param-
etersj0[~z0,c 0,Qc

0 ,Qs
0 ,v0). The condition of nontriviality

of these parameters provides the dispersion relation between
the applied field amplitudeE0 and the instability wave vec-
torsqx ,qz ,

«0E0
25

2Kh̄~q211!3~~R11!!q211)

q2~q211!~a32a2q
2!@~R11!«'2«8#2d«h̄~q211!3

qz
2, ~28!

where

R[
«0«9v

s'

~29!

and the in-plane wave vector, reduced with respect to the out-of-plane wave vector, isq[qx/qz , as defined. In the general
case, whendsÞ0, the potentialU5pE/qz is obtained as

«0
U0
2~q!

K11
5

2p2~K33/K11q
211!~h1q

41h12q
21h2!@~R1s!q211#

~q211!$q2@~R1s!«'2«8#~a32a2q
2!2d«~h1q

41h12q
21h2!%

. ~30!

Let us stress the fact that the behavior of the potentialU0~q!
is deeply affected by the value of the angular frequencyv:
actually, not onlyR~v! as defined in~29!, but also«85«8~v!
andd«5d«~v!, according to

d«5«`2«'1
«0«`

11~v/vD!2
; ~31!

see the second equation of the system~5!. Assuming the
reversal point to be close to the Debye frequencyvi>vD ,
the condition

d«~v⇒`!>2d«~v50! ~32!

has to be satisfied, providingv` , d«~v! from the data
«08[«8~v50!, and «'>const. The minimum of the field
E0(q), or of the potentialU0(q), provides the threshold con-
dition

Eth5min
q>0

E0~q!, ~33!

U th5min
q>0

U0~q!. ~338!

In particular, close to the inversion point, but whenv<vi ,
where it always isd«>0, the usual aperiodic Fre´edericksz
threshold is recovered as

Ua5pS K11

«0d« D 1/2, ~34!

which turns out to be real and finite only ford«.0, as ex-
pected. Instead, in the hypothesisds50 from Eq. ~28!, as-
sumings/~v«9«0!!1, the fieldE0 is given by

E0
2>

2Kh̄qz
2~q211!2

~a32a2q
2!«'«0

. ~35!

Thus, supposingua2u@ua3u, g1;2a2, the threshold field for
the generalized periodic Fre´edericksz transition is obtained
by minimizing, as

Ep
25

8Kh̄qz
2

g1«'«0
, ~36!

the critical reduced wave vector being

qc51. ~37!

Moreover, as is known from theory, in the case of strong
anchoring the boundary conditions provide the out-of-plane
wave vector as

qz>
p

d
,

which actually corresponds to the smallest possible director
deformation across a NLC layer with thicknessd. Thus we
conclude that in the inversion point the domains arise as
elongated in the direction perpendicular to the initial planar
orientation at the threshold voltage:
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Up5Epd54pF Kh̄

2g1«'«0
G1/2, ~39!

with a critical wavelength given by

lc5
2p

qcqz
52d. ~40!

We stress the fact that in both Eqs.~36! and~39! the thresh-
old value for the periodic texture depends neither on the sign
of d« nor on its absolute value: the periodic distortion can
arise also ford«<0. The experimental observations for sev-
eral NLC mixtures@6#, reported in Figs. 3 and 4, show good
agreement with the predictions given by Eq.~40! for the
critical wavelengthlc at the threshold.

III. DISCUSSION AND CONCLUSION

To discuss the agreement between the critical voltage for
the generalized periodic Fre´edericksz transition predicted by
our model and the one obtained by the experimental obser-
vations @6#, it is first necessary to give an estimate of the
viscosity and conductivity parameters that are included in the
present theory; see Eq.~30!. First of all, the inversion angu-
lar frequency is supposed to be high enough to be compa-
rable with the Debye frequency, so thatvi>vD : the experi-
mental observations confirm this statement. Another
parameter appearing in the theory is the real part of the ratio
between the parallel and the perpendicular conductivity
s8/s' . As shown by the experiments, this parameter is un-
essential when moving in the range 1–3: this is also verified
by the numerical analysis of the critical potential, as pre-
dicted by the present theory; see Eq.~30!. We assume, for
the sake of simplicity, thats8/s'52.17, as for one of the
mesogenic mixtures used in the experiments.

Concerning the viscosity parameters,a15531023 kg/m s,
a352131023 kg/m s, anda455031023 kg/m s are as-
sumed as standard values. The elastic constantsK11 andK33
are considered to be equal, i.e.,K11;K33;1310211 N. The
viscous coefficientsa2 and a5 turn out to be much more
critical than the others for achieving the minimum of the
function U(q) providing the critical potential, as demon-
strated by the numerical simulation: such a parameters have
to be estimated by comparing the theoretical thresholdUp
following Eq. ~30! with the experimental values, minimizing
the mean square deviation.

The experimental values for several NLC mixtures having
different dielectric real anisotropyd«5Re~«a! are reported in
Figs. 3 and 4. The best choice turns out to bea2522031023

kg/m s, whereasa5 depends on the value ofd« and ranges
from 0.1 and 0.3 kg/m s. We stress the fact that these values
of the viscosity parameters are consistent with the data avail-
able in the literature@16–20#.

The preceding comment is devoted to the parameter«' ,

FIG. 5. Best fit~continuous line! of the experimental data for the
three NLC mixtures of Fig. 3, close to the dielectric sign reversal
point vi . The best choice of the leading parametersa2, a5, and
2v«0/~s'! is 20.02 kg/m s, 0.20 kg/m s, and 10, respectively. The
dotted line corresponds to 2v«0/~s'!55 and the dashed one to
2v«0/~s'!520, with the same values as previously estimated fora2
anda5.

FIG. 3. Critical electric potentialUc for periodic steady defor-
mation as a function of the reduced angular frequencyv/vi . Ex-
perimental data for three different NLC mixtures withd«054.7 ~3
data!, d«050.35 ~s data!, and d«050.05 ~n data!, where
d«0[d«~v50! practically is the real dielectric anisotropy at very
low frequency.

FIG. 4. Critical wavelengthlc of the splay-bend periodic dis-
tortion, as a function of the reduced angular frequencyv/vi . Ex-
perimental data for two different NLC mixtures withd«054.7 ~3
data! andd«050.35 ~s data!.
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which is assumed to be equal to;6, as measured for the
NLC compounds used in the experiments. As seen from the
experimental data~see Fig. 3!, around the dielectric inver-
sion point, for small absolute values of the real dielectric
anisotropy, the threshold is strongly dependent on the fre-
quency: from the numerical simulation such an important
dependence is demonstrated to appear only if the term
2v«0/s' is comparable with the ratios8/s' , that is, if
1,2v«0/s',20.

As can be seen from Fig. 5, the best choice turns out to
be, according to the minimum square method, 2v«0/s';5 in
the case of low dielectric anisotropy~d«050.05! and
2v«0/s';10, for d«050.35 and 4.7, whered«0[d«~v50!;
see Eq.~31!. This result is in agreement with the experimen-
tal observations of the parameter 2vi«0/s' .

Based on these facts, we come to the conclusion that the
quasistatic modulated structure near the dielectric sign rever-

sal frequency arises mainly due to the dielectric loss and not
only in the frequency region, where the usual aperiodic
Fréedericksz transition ceases to exist~d«.0!, but also
where the initialP orientation in principle should be stabi-
lized ~d«,0!. Both the free ions and the apparent space
charge created by the dielectric loss interact essentially with
the external field providing a drag force, which causes a
steady electrohydrodynamic motion in the plane perpendicu-
lar to the domain direction. The NLC director distribution
remains steady and the effective space charge is steady as
well, oscillating with the same frequency of the applied field
and with a convenient phase shift. The observed texture can
be called quasistatic since the stripe borders actually are
static, also in the presence of a regular bidimensional distri-
bution of the steady velocity field. The quasistatic model
proposed here describes well the experimental data.
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